Challenges of Microsimulation Calibration with Traffic Waves using Aggregate
Measurements

Abstract: Calibration Problem and Objective Function: Results and Conclusions:
This work explores the challenges associated with calibrating parameters of Microscopic calibration commonly means that a certain model structure 1s postulated with aohandful of Eree pare't'meters that 1. Influence of stochastic forcing and existence of model instability
microscopic models with aggregate speed data, e.g., obtained from roadside are to be fitted so that the model reproduces available measurement data suitably well. Specifically, the “best fit" parameters space Time Diagrams: a=1.2.b=1.3
sensors. Using the Intelligent Driver Model, we explore how reliably parameters are determined as the solution of an optimization problem of the form: R -
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data. Using a carefully controlled computational setup, we show that standard loss {) = 800 800 | 800 |
functions used for calibrating microsimulation models can perform poorly when the where 0 are the free decision variables to be determined, A are (non-free) hyper-parameters that are known a-priori, Y,..,4; are the ‘g’ 7007 700 700 §
true parameters result in an unstable traffic state. Precisely, it 1s found that all of the measurement data Y;,,, are the corresponding data generated by a stochastic simulated model under a given parameter choice £ 600 600 600 |}
cons1d§red loss functions frequently return different and incorrect par.ame?ter sets and L 1s a loss function that defines a suitable distance between data and model prediction. While the data 1s range agnostic, in S 500 500! 11
that MINIMIZe the expected Vglue of the loss function. Thes§ .results highlight the this work, however, we use macroscopic measurements (e.g., from roadside sensors such as inductive loops or radar units) as 400 400. 200! 1t
need for improved loss functions, or even fundamental additions to the model our input data. Moreover, we restrict to car-following calibration, i.e., we do not consider perimeters associated with origin 300 _ 300 b Lo
calibration procedure. destination calibration or lane changing logic. 1000 1500 1000 1500 1000 1500
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i i i O FIGURE 4: Three time space diagrams colored by speed in (m/s) produced from identical simulations except for the random seed, with (a,
SI mu Iatlon Experl ment. b) = (1.2, 1.3). Waves are present and small variations occur in the phase and amplitude of the waves.
Intelllgent Drlver MOdEI (IDM)_: Speed measurements for a=0.5,b=1.3 (left) vs. a=1.2,b=1.3 (right)
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In order to describe the trajectories of individual vehicles, each vehicle is modeled \ _17.5] _17.5
via an ordinary differential equation that either describes the vehicle velocity (first £1s5.0 " £1s.0
order models), or the velocity and acceleration (second-order models). Second- g 12.5 g 12.5 A /'\\ A/
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The IDM 1s a special case of [1] and reads FIGURE 2 : A graphic representing the road geometry combined with a single radar sensor 0.0l . — — = . o0l = = — = _
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| enerating aggregate speed measurements. : : : : :
(6 Av) , ( V )( ( s* (v, Av) )2 " & g ag8Ice peed Figure 5: [l1lustration of the time series measurements recorded for the three simulations under (a, b) = (0.5, 1.3)
, » 8, V, AV)IDM = d -\ | — (left) and (a, b) = (1.2, 1.3) (right).
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where s*(v, Av) is given by [3] NETWORK GEOMETRY Single lane road of length 2100 m with a single sensor placed at x = 500 m SE loss function to recover true parameters a dLsef ity tly to true pa 2;5 betfz 5
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IDM and the Fundamental Diagram (FD): o . g N S
9 ( )— TABLE 0: Summary of simulation set up and settings 5 , 5"
Road traffic 1s always in a specific state that 1s characterized by the flow rate, traffic - g
density and the mean speed. We combine all the possible homogeneous and MEthOdOIOM 2 3 B
stationary traffic states in an equilibrium function that can be described graphically M 5] s e
by three diagrams known as the Fundamental Diagram. IDM has been shown to Given the simplified experimental setting . | ; 0 3 4 5 6 7 ; P =
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have robust fit when compared to measured controlled traffic data,.(Fig. 1). described abov.e, the resulting Callbratlon. | L ( Yieal, Yo) = v, E L ( Yyeal, Y() ) (6] Figure 6: a) Histogram of RMSE loss function evaluations comparing a holdout ¥'sim generated under the true parameters (a, b) = (0.5,
2500 f . ©) ' Data - problem stated in (1) amounts to 8 containing i=1 1.3). b) Loss function evaluations using LRMSE and a true parameter set of (a, b)=(0.5, 1.2) are shown for every parameter set,
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p (1/km) p (1/km) parameter sweep solution approach (which is V=L Treal) MNE: 49.0 0.40 0.25
150 : 150 |45, . " Data - | costly but it eliminates any error in the — RMSNE: 47.5 0.39 0.24
N : _ B inaic. . 2 W optimization procedure itself). Namely we Root mean normalized squared error — Lgysne \/ e (Y(y’)'ly(l)’ (’)) MANE: 47.1 0.37 0.24
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o (k) _ respectlvely (with units m/s2, for S_Im.pIICIty | TABLE 2 : Reporting of three different error metrics on each candidate loss function. All loss
FIGURE 1: Fit of IDM on real data omitted here and below). As we will illustrate in Root mean squared error Laviss \/ LYN (y (1) = Vo (i) functions are found to have similar and high degrees of error in their performance.
o N the Results section, the loss function hinders N Li=]\"sim rea
We have shown that under. equ111br1um conditions, the factors a .anc.l b do n0.t affect the ability to correctly calibrate the model, even Mean absolute error Ly LN 1y (1) = Vot 0
the shape of the FD. P1.1t dlfferentl.y,. th.1s means.ﬁndmg the equlohbrlum spacing when solved via a brute force approach. To N Lij=] 4 sim rea ACkn owledg em ents
function S?C.I (v.), that glyes an equlhbrlum spacing value for a given speed. For a > evaluate the loss function under a given \/ R
0, the equilibrium spacing function reads parameter set 0, suppose a total of M Thiel’s inequality coefficient Ly 1 NN Lic "‘;"" ' ] “"1';' | This material is based upon work supported by the National Science Foundation under Grant CNS-1837652, and
5o+ vT simulations are conducted. Then, the effective \/ v Ziz r«al("))'ﬂ/ N Ziy (Fsim(0))? work supported by the U.S.\Department of Energy's Office of Energy Efficiency and Renewable Energy (EERE)
Seq(V) = S (4] loss function between the simulated data for under the Vehicle Technologies Office award number CID DE-EE0008872. The views expressed herein do not
\ 1 — ( v ) this @ and real data is given by [6] . TABLE 1: A summary of the loss functions considered in this study. necessarily represent the views of the U.S. Department of Energy or the United States Government.
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