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Process Summary

Figure: Summary of SCQ Design Process
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Bottlenecks

• Designing physical quantum circuits is a non-trivial problem and the iterative
process creates a bottleneck

• Reality is used as simulation because its faster in a lot of cases

• This is an area of active multi-faceted research - scqubits, sqcircuits, open
quantum tools, Machine learning in EDA

• Simulator(hyperparameters, validation data) ≈ reality

• Simulation pipeline → SQuADDs (Superconducting Qubit And Device
Design and Simulation database)
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Our Problem

• Fluxonium qubit is a promising candidate - we want to create easy access to
doing science with it

• Create an open-source tool to design fluxonium circuits
• Create a validated simulation framework for fluxonium similar to Transmons
• Contribute the data to SQuADDS to help others with their design-to-fab
process
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Quick Review: Classical LC Resonator Circuit

• From node voltages V (t) and currents I (t) to instantaneous energies E (t)
and generalized coordinates Q(t),Φ(t):

E (t) =

∫ t

−∞
V (t ′)I (t ′)dt ′

Q(t) =

∫ t

−∞
I (t ′)dt ′

Φ(t) =

∫ t

−∞
V (t ′)dt ′

• leads to classical LC circuit Hamiltonian:

H = Φ̇pΦ − L

=
1

2
C Φ̇2 +

1

2L
Φ2

=
1

2C
Q2 +

1

2L
Φ2

7 / 27



DB Fluxonium

S.A.S., A.,
A.F.B.

H →
Cleanroom

The Fluxonium
Qubit

Simulations,
Analysis and
Results

Conclusions and
Looking forward

References

Quick Review: Classical LC Resonator Circuit

• From node voltages V (t) and currents I (t) to instantaneous energies E (t)
and generalized coordinates Q(t),Φ(t):

E (t) =

∫ t

−∞
V (t ′)I (t ′)dt ′

Q(t) =

∫ t

−∞
I (t ′)dt ′

Φ(t) =

∫ t

−∞
V (t ′)dt ′

• leads to classical LC circuit Hamiltonian:

H = Φ̇pΦ − L

=
1

2
C Φ̇2 +

1

2L
Φ2

=
1

2C
Q2 +

1

2L
Φ2

7 / 27



DB Fluxonium

S.A.S., A.,
A.F.B.

H →
Cleanroom

The Fluxonium
Qubit

Simulations,
Analysis and
Results

Conclusions and
Looking forward

References

Quick Review: Quantum Harmonic Oscillator(QHO)

• Quantize charge and flux operators

H =
1

2C
Q2 +

1

2L
Φ2

= 4

(
e2

2C

)(
Q

2e

)2

+
1

2

(
Φ0

2π

)2 1

L

(
2πΦ

Φ0

)2

= 4ECn
2 +

1

2
ELϕ

2

= 4EC

[(
EL

32EC

)1/4

i
(
a− a†

)]2

+
1

2
EL

[(
2EC

EL

)1/4 (
a+ a†

)]2

=
√
8ELEC

(
a†a+

1

2

)
= ℏω

(
a†a+

1

2

)
, ω =

√
8ELEC/ℏ
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Quick Review: Fixed-Frequency Transmon

• Replace linear inductor with Josephson junction, which obeys Josephson
relations:

I = Ic sin(ϕ), V =
ℏ
2e

dϕ

dt
,

• Calculate new potential energy

UJ =

∫
VIdt

=

∫
ℏ
2e

dϕ

dt
Ic sin(ϕ)dt

= −EJ cos(ϕ)

• Fixed-frequency transmon Hamiltonian:

H = 4ECn
2 − EJ cos(ϕ)
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Quick Review: Fixed-Frequency Transmon

• Fixed-frequency transmon Hamiltonian:

H = 4ECn
2 − EJ cos(ϕ)

= 4ECn
2 +

1

2
EJϕ

2 − 1

24
EJϕ

4 +O(ϕ6)

= 4EC

[(
EJ

32EC

)1/4

i
(
a− a†

)]2

+
1

2
EJ

[(
2EC

EJ

)1/4 (
a+ a†

)]2

− 1

24
EJ

[(
2EC

EJ

)1/4 (
a+ a†

)]4

+O(ϕ6)

• Retaining only Fock-number-preserving terms, we have

H =
(√

8EJEC − EC

)
a†a− 1

2
ECa

†a†aa

= ωqa
†a+

1

2
αa†a†aa, ωq =

√
8EJEC − EC , α = −EC
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Quick Review: Fluxonium

• Wire branch in parallel with JJ; increase number of junctions on one arm to
∼100 [1], we arrive at the fluxonium Hamiltonian:

H = 4ECn
2 − EJ cos(ϕ+ φe) +

1

2
ELϕ

2.

Figure: Fluxonium circuit
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Simulation outputs to Hamiltonian Parameters

SQuADDS [2] treatment of fixed-frequency transmon

Hq = 4EC ,qn
2
q − EJ cos(ϕq)

capacitively coupled to a QHO resonator

Hr = 4EC ,rn
2
r +

1

2
ELϕ

2
r

with interaction Hamiltonian

Hint = 4e2
Cc

CqCr
nqnr

Figure: Fluxonium circuit
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Simulation outputs to Hamiltonian Parameters

• In the SQuADDS paper [2], they determined that

g ≈ Cc

Cq

√
e2ωr

Cr

(
Ej

8EC ,q

)1/4
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Fluxonium Device Design from Professor Pechenezhskiy

Figure: Zucchini recreated in Qiskit Metal
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Design Tool Creation

• Parametric creation of the Zucchini Fluxonium Qubit in Qiskit Metal
• Refactored AnsysHFSS Renderer and Custom QGmsh Renderer
• ”Plug and play” compatibility with LOM and EPR Analysis from Qiskit Metal
API
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Connecting to Ansys

Figure: Cap. and Ind. Mat. Extraction
from Fluxonium

Figure: E field distribution of cavity

• Rendering was trivial but
TEDIOUS

• Runs native to Transmons in
qiskit-metal API

• Refactored EPR code to handle
non-linear terms
non-perturbatively
[https://arxiv.org/pdf/

2309.17286v1.pdf]

• Flow:

• Design → Ansys → Simulation
Outputs (e.g. cap. matrix, ind.
matrix, eigenmode data, etc) →
Qiskit Metal Analyses (e.g.
LOM, EPR, etc)
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Connecting to Palace

Figure: CPW Mesh Input to Palace

• Palace requires a mesh file and
configuration file as an input

• Mesh file defines the geometry
and configuration file defines the
materials and physics

• Hyper-parameter turning needed
similar to Ansys

• Flow:

• Design → Mesh
• (Mesh + Config) → Palace
• Palace → Simulation Output

Files (e.g. E field distr., cap.
matrix, eigenmode data, etc)

• Simulation Output Files → Your
Analysis Code
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Simulation Methodology

• Ran the pyEPR simulation and analysis on our simulation unit - fluxonium +
cpw + coupler + transmission line stub

• Ran a hybrid LOM Analysis in Ansys HFSS

• capacitance matrix and inductance matrix extraction of fluxonium only
• eigenmodal simulation of cpw + coupler + transmission line stub

• Ran the same LOM Analysis above but with AWS Palace

Results: (Design Parameters 7→ Hamiltonian Parameters) s.t. compatible with
SQuADDS
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Simulation Results

Comparison of Measured and Simulated Qubit Parameters.

Measured HFSS (LOM) HFSS (EPR) Palace

EJ (GHz) 1.29 1.29 1.29 1.29
EL (GHz) 0.87 0.54 ... 0.87*
EC (GHz) 1.31 1.26 ... 1.29

fq(ϕ = 0) (GHz) 2.64 3.90 7.12* 2.61
fr (GHz) 5.55 5.78 5.48 5.73
g (MHz) 40 TBD 81* TBD

Values in blue are user input parameters and values in orange are computed using scqubits
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Understanding the Results: HFSS (LOM)

Table: Comparison of Measured and HFSS (LOM)
Qubit Parameters

Measured HFSS (LOM)

EJ (GHz) 1.29 1.29
EL (GHz) 0.87 0.54
EC (GHz) 1.31 1.26

fq(ϕ = 0) (GHz) 2.64 3.90
fr (GHz) 5.55 5.78
g (MHz) 40 TBD

• Variation in EL from
measured value =⇒
issues with I mat.
extraction

• Resonator frequency fr
and cap. mat. (EC ) are
closer to measured values.

• fq error as a consequence
of EL
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Understanding the Results: HFSS (EPR)

Table: Comparison of Measured and HFSS (EPR)
Qubit Parameters

Measured HFSS (EPR)

EJ (GHz) 1.29 1.29
EL (GHz) 0.87 ...
EC (GHz) 1.31 ...

fq(ϕ = 0) (GHz) 2.64 7.12*
fr (GHz) 5.55 5.48
g (MHz) 40 81*

• Bug in inductive loop, L,
value....
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Understanding the Results: Palace

Table: Comparison of Measured and Palace
Qubit Parameters

Measured Palace

EJ (GHz) 1.29 1.29
EL (GHz) 0.87 0.87*
EC (GHz) 1.31 1.29

fq(ϕ = 0) (GHz) 2.64 2.61
fr (GHz) 5.55 5.73
g (MHz) 40 TBD

• Could not get extract L matrix
from palace because of incorrectly
defined config

• issue is in defining currents
through JJ (most likely)

• got 0.276 GHz once, but not
repeatable

• Eigenmodal and capacitance
matrix results are reliably accurate
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Summary

• Motivation: Democratize and accelerate research of fluxonium systems by
reducing the barriers to entry

• Deliverables:

• open-source code in qiskit-metal to parametrically generate fluxonium designs
• simulate and analyze fluxonium systems in Ansys HFSS
• simulate and analyze fluxonium systems in AWS Palace

• Future Work:

• Finish deriving g for the fluxonium-cavity system
• Address the simulation issues discovered
• Simulate en-masse in palace and contribute to SQuADDS
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