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In this work, we conduct an extensive numerical simulation study to analyze the effects of different
master equations and charge noise modeling on the open quantum dynamics of a trimon system.
We compare the predictions of the Lindbladian master equation (LME), Redfield master equation
(RME), and Time-Convolutionless (TCL) master equations on the trimon’s populations, coherences,
and qubit state evolutions. Our study spans a range of initial density matrix states and various
regimes of bath coupling strength and dephasing parameters. Furthermore, we also introduce a
novel model for charge noise as a combination of amplitude and time-dependent phase damping. Our
findings reveal interesting consistencies and discrepancies in the predictions of the master equations,
with notable divergence in scenarios of strong dephasing amplitude. The TCL master equations, in
particular, show potential implementation issues warranting further exploration.

I. INTRODUCTION

Quantum computing has garnered significant attention
due to its potential to solve complex problems more ef-
ficiently than classical computing methods [1]. Qubits,
the basic building blocks of quantum computing, are sus-
ceptible to various noise sources that can hinder the per-
formance of quantum devices. Therefore, understanding
and mitigating the effects of noise is crucial for the de-
velopment of practical quantum computers [2].

Trimon systems, composed of three qubits, have re-
cently attracted interest in the quantum information
community as a platform for studying the effects of noise
on quantum devices [3]. In this work, we investigate
the dynamics of a trimon system under the influence of
charge noise, a major source of decoherence in solid-state
qubits [4]. Charge noise arises due to fluctuations in the
electrostatic environment and can cause qubit energy lev-
els to shift, which leads to decoherence [5].

We begin by introducing the trimon Hamiltonian and
deriving a charge noise model. The noise model is then
incorporated into a Lindblad Master Equation [6] to de-
scribe the system’s dynamics. To further analyze the
impact of charge noise on the trimon system, we em-
ploy both the Redfield-Bloch formalism [7] and the time-
convolutionless (TCL) projection operator technique [8]
to derive Master Equations, providing insight into the
importance of higher-order contributions to the system
dynamics.

In this paper, we present a detailed study of the open
quantum dynamics of such a trimon system under the in-
fluence of various master equations and modeled charge
noise. We compare the predictions of the Lindbladian
Master Equation, the Redfield Master Equation, and
the Time-Convolutionless Master Equations. Our sim-
ulations encompass various initial density matrix states,
different regimes of bath coupling strength, and a range
of dephasing parameters.
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II. TRIMON SYSTEM AND HAMILTON

A Trimon system is a multimode superconducting cir-
cuit that constitutes a key building block for scalable,
programmable quantum processors. The Trimon sys-
tem leverages the intrinsic features of superconducting
circuits, such as high coherence times and strong an-
harmonicities, to enable coherent control over multiple
frequency modes, paving the way for efficient quantum
information processing and manipulation [9].
In typical superconducting architectures, the trimon

system comprises three modes: a fluxonium qubit, a su-
perconducting cavity, and a superinductor-based trans-
mon, which are coupled via a superconducting quantum
interference device (SQUID) [10]. The Hamiltonian of
the Trimon system can be written as:

H = Hflux +Hcav +Htrans +Hint

where Hflux, Hcav, and Htrans represent the Hamiltoni-
ans of the fluxonium qubit, the superconducting cavity,
and the superinductor-based transmon, respectively, and
Hint represents the interaction Hamiltonian describing
the coupling between these modes [9].

FIG. 1. Circuit Diagram of a trimon system using transmon
qubits [9]

A crucial aspect of such systems is the ability to dy-
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namically tune the coupling between the different modes,
enabling selective coupling and decoupling for effective
quantum gate operations. To achieve this, the SQUID
is designed to have a tunable inductance, which can be
controlled by an external magnetic flux. The tunability
of the SQUID inductance allows the adjustment of the
interaction Hamiltonian:

Hint =
∑
i,j

gija
†
iaj

where gij represents the coupling strength between

modes i and j, and a†i and aj are the creation and an-
nihilation operators for the respective modes. By tuning
the coupling strength between different modes, the Tri-
mon system facilitates coherent control over multiple fre-
quency modes, a key requirement for implementing pro-
grammable quantum processors [9].

In our work, we assume a simplified model of a trimonic
system consisting of three interacting qubits, which can
be described by a Hamiltonian of the following form:

Htrimon =

3∑
i=1

1

2
ϵiσ

(i)
z +

∑
i<j

Jijσ
(i)
z σ(j)

z , (1)

where Htrimon is the system Hamiltonian, ϵi denotes

the energy of the i-th qubit, σ
(i)
z is the Pauli Z for the i-th

qubit, and Jij represents the coupling strength between
the i-th and j-th qubits.
To study the open system dynamics of this trimon sys-

tem, we need to introduce interactions between the sys-
tem and its environment. In the next subsection, we
introduce a charge noise model to describe this interac-
tion.

A. Charge Noise Modeling in the Trimon System

In order to incorporate realistic charge noise in the
Trimon system, we employ collapse operators that en-
capsulate relaxation and dephasing processes [11, 12].
These procedures are resultant from the interaction of
the qubits with their environment, which are suitably
captured using the Lindblad master equation approach,
modeling open quantum system dynamics.

Two quintessential collapse operators for modeling
charge noise include the amplitude damping (energy re-
laxation) and phase damping (pure dephasing) operators
[11]:

• Amplitude Damping Operator (Energy Relax-
ation): This operator signifies the process where
an excited qubit relaxes to the ground state due to
environmental interactions. It can be formulated
as follows:

A =
√
γ |0⟩⟨1|,

where γ represents the relaxation rate.

• Phase Damping Operator (Pure Dephasing): This
operator signifies the process in which a qubit loses
its phase coherence due to environmental interac-
tions, without changing energy. It can be repre-
sented as follows:

P =

√
γϕ
2

|1⟩⟨1|,

where γϕ denotes the dephasing rate.

• Time-dependent Phase Damping Operator: A
more realistic scenario could be to consider a fluc-
tuating charge noise environment impacting the
qubits. In this case, the dephasing rate becomes
time-dependent, leading to a time-dependent col-
lapse operator. Such a time-dependent dephasing
rate can be modeled using a sinusoidal function:

γϕ(t) = γϕ0
+A sin(2πft),

where γϕ0
is the base dephasing rate, A is the am-

plitude of the fluctuations, and f is the frequency
of the fluctuations.

In our study, we model the charge noise as a process
comprising both amplitude damping and time-dependent
phasing damping. Thus, in the presence of charge noise,
the system Hamiltonian becomes:

Hsys = Htrimon +Hnoise,

where Hnoise models the charge noise in the system:

Hnoise =
∑
i

ξi(t)ni

where ni is the number operator for the i-th mode
(associated with the amplitude damping), and ξi(t) is a
time-dependent stochastic process modeling the fluctu-
ations in the charge environment (associated with the
time-dependent phase damping).
In our case, we relax the stochastic process considera-

tion and use ξi(t) = Ai sin(2πfit + ϕi), where Ai is the
amplitude of the noise, fi is the frequency, and ϕi is a
phase offset. This form allows the noise to have a certain
frequency spectrum centered around fi, as is often the
case in realistic charge noise environments [13].
We use this noise model to derive the Lindbla-

dian Master Equation (LME), Redfield Master Equation
(RME), and the Time Convolutionless Master Equation
(TCLME) - which are the focii of the rest of the paper.
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III. LINDBLAD MASTER EQUATION

We know the Lindblad Master Equation is given by

dρ

dt
= −i[H, ρ] +

∑
k

γk

(
AkρA

†
k − 1

2
A†

kAk, ρ

)
(2)

For our case with amplitude damping and time-
dependent phase damping operators, the Lindblad Mas-
ter Equation can be written as:

dρ

dt
= −i[Hsys, ρ] +

3∑
i=1

(
2
√
γiσ

−
i ρσ

+
i − {σ+

i σ
−
i , ρ}+

2γϕi(t)σziρσzi − {γϕi(t)σ
2
zi , ρ}

(3)

Here, ρ is the density matrix of the trimon system, σ+
i

and σ−
i represent the raising and lowering operators for

the i-th qubit, and σzi is the Pauli-z operator for the i-
th qubit. γi is the amplitude damping rate for the i-th
qubit, and γϕi

(t) is the time-dependent phase damping
rate for the i-th qubit.
The LME describes the time evolution of the density

matrix ρ considering both the unitary evolution and the
effects of the environment in the form of amplitude and
time-dependent phase damping (i.e. charge noise effects).

IV. REDFIELD MASTER EQUATION

For deriving the Redfield and TCL Master Equations,
we need to define the bath and the system-bath interac-
tion Hamiltonians:

HB =
∑
k

ℏωk(b
†
kbk +

1

2
) (4)

where b†k and bk are the creation and annihilation op-
erators for the k-th mode of the bath with frequency ωk.

HI =
∑
i=1

σ(i)
z ⊗

∑
k

gk(bk + b†k)

We then transform this Hamiltonian into the interac-
tion picture to separate the system and environment dy-
namics.

HI(t) = ei(Hsys+HB)t/ℏHIe
−i(Hsys+HB)t/ℏ

= eiHStAe−iHSt ⊗B

where A and B are the system and bath operators, re-
spectively.

The total time-evolution of the system is dictated by
the Liouvillian superoperator, which, in the absence of

system-environment interactions, reduces to the system
Liouvillian, [11, 14] LS = −i[HS , ·].
The Redfield tensor R is calculated by considering the

influence of the environment on the system. This calcu-
lation involves finding the ensemble average of the corre-
lation functions in the bath and integrating over all times
[15]. For a system weakly coupled to a Markovian bath,
the Redfield tensor can be approximated as

R =
∑
k

γk(t)
(
2LkρL

†
k − L†

kLkρ− ρL†
kLk

)
where γk(t) are the relaxation rates and Lk are the

Lindblad operators.
We further need to account for the bath’s temperature

by defining the spectral density of the bath, J(ω) (we as-
sume an Ohmic Spectral Density), and the Bose-Einstein
distribution, n(ω).

J(ω) =
2αω

π

ωs
c

ωs
c + ωs

where α is the coupling strength, ωc is the cut-off fre-
quency, and s is a parameter defining the type of spectral
density (s = 1 for our case).

n(ω) =
1

eℏω/kBT − 1

where kB is the Boltzmann constant and T is the tem-
perature (we use 8 mK) of the bath.
We then incorporate the amplitude damping and phase

damping operators, which describe the decoherence of
the system due to its interaction with the environment.
The amplitude damping channel is described by the

operator La =
√
γ(1 + n(ω))σ−, where γ is the damp-

ing rate and σ− is the lowering operator. While, the
phase damping channel is described by the operator
Lp =

√
γ(t)n(ω)σz, where γ(t) is the time-dephasing rate

and σz is the Pauli-z operator.
These operators are incorporated into the Redfield

Master Equation to yield

ρ̇(t) = −i[HS , ρ(t)]+
∑
k

γk(t)
(
2Lkρ(t)L

†
k − L†

kLkρ(t)− ρ(t)L†
kLk

)
(5)

where ρ(t) is the system density matrix and the sum is
over all the Lindblad operators, including the amplitude
and phase damping operators. This equation describes
the non-unitary evolution of the system due to its inter-
action with the environment.

V. TIME-CONVOLUTIONLESS (TCL) MASTER
EQUATION

In our study we want to explore the non-Markovian dy-
namics of a quantum system interacting with its environ-
ment by utilizing the Time-Convolutionless (TCL) for-
malism [11]. The TCL method provides a more accurate
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description of the system-environment interaction, espe-
cially for non-Markovian dynamics, compared to other
methods such as the standard Redfield equation that we
derived in the previous section. The TCLN order mas-
ter equation is derived by incorporating the N th-order
time-convolutionless projection operator expansion.

In this paper, we will primarily focus on studying the
TCL2 ME (second order) and will provide a very general
description on how to derive TCL4 ME.

A. TCL Order 1:

TCL1 is essentially the coherent evolution of the sys-
tem without taking into account the system-bath inter-
action. Therefore, the TCL1 equation is simply:

dρ(t)

dt
= −i[HS , ρ(t)] (6)

where ρ(t) is the reduced density matrix of the system.

B. TCL Order 2

Similar the the Redfield formalism, to derive TCL2 ME
we start in the interaction picture.

HSB(t) =
∑
i

σ(i)
z ⊗

∑
k

(
gke

iωktbk + g∗ke
−iωktb†k

)
Now, we want to calculate the time correlation func-

tions of the environment, which are defined as:

Cij(t) =

〈(∑
k

gke
−iωktbk

)†

i

(∑
k

gke
iωktbk

)
j

〉

For simplicity, we assume that the environment is in
thermal equilibrium, and the time correlation functions
are exponential:

Cij(t) =
γij(t)

2
(n(ωij) + 1) eiωijt +

γij(t)

2
n(ωij)e

−iωijt

with n(ωij) being the Bose-Einstein distribution function
for the frequency ωij , and γij(t) represents the decay
rates between energy levels i and j. Since, one of the
decay rate (dephasing) is time-dependent in our model,
we need to ensure that they are consistent with the bath
operators.

We can calculate the bath correlation functions using
the bath operators and the spectral density function as
follows:

Cϕi
(t) =

∫ ∞

0

dωJ(ω) cos(ωt)e−ω/ωc

where ωc is the cutoff frequency, γϕi
it the time-

dependent phase damping rates and Cϕi
(t) is the bath

correlation function for the i-th qubit.
The time-dependent phase damping rates can be calcu-

lated as the time derivative of the bath correlation func-
tions:

γϕi
(t) =

dCϕi
(t)

dt
.

For the amplitude damping rate γi, we can use Fermi’s
golden rule to calculate the transition rate between en-
ergy levels:

γi = 2πJ(ωi)|⟨ei|σzi |gi⟩|2,

where |ei⟩ and |gi⟩ are the excited and ground states of
the i-th qubit, and ωi is the transition frequency between
these two states.
Now, we want to compute the memory kernel K(t−t′),

which involves convolving the time correlation functions.
Recall that K(t− t′) represents the system’s memory of
its past states and is typically expressed as a matrix that
depends on the time difference t− t′:

K(t− t′) =

∫ t−t′

0

dsC(t− s) (7)

Using this memory kernel, we set up the TCL master
equation, which is an integro-differential equation for the
reduced density matrix of the system:

d

dt
ρ(t) = −i[HS , ρ(t)]−

∫ t

0

ds [K(t−s)ρ(s), HSB(s)] (8)

Now, to actually solve Eq. (8) we employ the following
pseudo-algorithm:

1. Compute the Laplace transforms of Kij(t− t′) and

Cij(t) to get K̃ij(s) and C̃ij(s)

2. Compute ρ̃(0) from ρ(0) (Laplace transform) and

D̃(s) from K̃(s)

D̃(s) =
K̃(s)

s

3. Compute the Liouvillian superoperator L̃(s) from

D̃(s)

L̃(s) = −i[HS , ·] + D̃(s)

4. Solve TCL 2 numerically (we used python -

scipy.linalg.solve(L_tilde(s),
rho_tilde (0))
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) to get ρ̃(s)

ρ̃(s) =
ρ̃(0)

s
− L̃(s)ρ̃(s)

5. Compute ρ(t) by taking the inverse Laplace trans-
form of ρ̃(s)

C. TCL Order 4:

To derive the 4th order (TCL4) master equation using
the TCL formalism [11], we need to expand the time-
ordered exponential and consider up to the fourth-order
terms. The TCL4 master equation will have the form:

dρ(t)

dt
= −

∫ t

0

dt1

∫ t1

0

dt2

∫ t2

0

dt3 TrB{[HSB(t), [HSB(t1),

[HSB(t2), [HSB(t3),ρS(t3)⊗ ρB ]]]]}
(9)

VI. CONNECTING TCL2 ME AND REDFIELD
ME

dρ(t)

dt
= −

∫ t

0

dt1 TrB{[HSB(t), [HSB(t1), ρS(t1)⊗ ρB ]]}

(10)
Using the general form of TCL2 ME Eq. (10), we

can expand the double commutator and make use of
the Born-Markov approximation, which assumes that the
system and bath are only weakly coupled and that the
bath returns to equilibrium much faster than the sys-
tem evolves. This allows us to replace the ρS(t1) in the
equation with ρS(t) and assume that the integral over t1
converges rapidly:

dρ(t)

dt
= −

∫ t

0

dt1 TrB{HSB(t)HSB(t1)ρS(t)⊗ ρB

−HSB(t)ρS(t)⊗ ρBHSB(t1)−HSB(t1)HSB(t)ρS(t)⊗ ρB

+ρS(t)⊗ ρBHSB(t1)HSB(t)}
(11)

Under the Born-Markov approximation, the above
equation simplifies to a Lindblad master equation of the
form:

dρ(t)

dt
= −i[HS , ρ(t)]+∑

k

γk

(
Lkρ(t)L

†
k − 1

2
L†
kLkρ(t)−

1

2
ρ(t)L†

kLk

) (12)

where ρ(t) is the reduced density matrix of the system,
γk are the decay rates, and Lk are the Lindblad operators
(also known as jump operators).
To derive the TCL2 Redfield equation, we need to

rewrite the interaction-picture interaction Hamiltonian
HSB(t) in terms of the system operators Ak and bath
operators Bk:

HSB(t) =
∑
k

(Ak ⊗Bk)(t) (13)

Substituting this expression into the TCL2 master equa-
tion and using the Born-Markov approximation, we ar-
rive at the Redfield equation:

dρ(t)

dt
= −i[HS , ρ(t)] +

∑
k,l

(RklAkρ(t)A
†
l −

1

2
A†

lAkρ(t)

−1

2
ρ(t)A†

lAk)

(14)

Where Rkl are the Redfield tensor elements, given by:

Rkl =

∫ ∞

0

dt eiωlkt
(
C+

kl(t) + C−
kl(t)

)
(15)

ωlk = ωl − ωk, and C
±
kl(t) are the bath correlation func-

tions.

VII. SIMULATIONS

In this section, we present the results of our numeri-
cal simulations of the open system dynamics of our tri-
mon system. Our primary focus is to study the popu-
lations, coherences, and Bloch sphere evolutions of the
qubits under different master equations. By comparing
these results, we aim to gain insights into the relative
strengths and weaknesses of different master equations
in predicting the open quantum dynamics of a trimon
system. Such a systematic comparison will not only vali-
date our simulation framework but also contribute to the
broader understanding of open quantum systems
The primary parameters of our simulations include the

Hamiltonian of the system, the system-bath coupling op-
erators, and the spectral density of the bath. For the
system-bath coupling operators, we have accounted for
the interaction of each of the three qubits in the trimon
system with the bath (kept constant across the various
models). We model the spectral density of the bath using
the Ohmic spectral density function.
The simulation codebase has been

made public and can be found here -
https://github.com/shanto268/trimon oqs.
Unfortunately, due to the time constraints set by our

project deadline, we could not use the TCL2 algorithm
defined earlier to compute the dynamics - its implemen-
tation was/is not optimized for the time range of inter-
est because of high computational cost of the routine.

https://github.com/shanto268/trimon_oqs
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FIG. 2. From left to right: Populations in Qubit 1, 2 and 3

Instead, we used the HEOM method to implement the
TCL2 in simulation.

In this HEOM approach, one solves the dynamics and
steady state of a system and its environment, the latter
of which is encoded in a set of auxiliary density matri-
ces. The Bosonic environment is implicitly assumed to
obey a particular Hamiltonian in this approach [16], the
parameters of which are encoded in the spectral density,
and subsequently the bath correlation functions.

Moreover, the API of ‘qutip‘ (an opensource package
in python) restricts us to only use Drude-Lorentz Spec-
tral Density. We found a clever solution through a tuto-
rial inspired by [17–19] which allowed us to use a set of
underdamped brownian oscillator functions with Drude-
Lorentz Spectral Density and Matsubara decompositions
[17, 20] to approximate our Ohmic Spectral Density for
the overall bath within the constraints of the API.

A. Results

Through our simulations we observe an intriguing phe-
nomenon. The Lindbladian master equation (LME) and
the Redfield master equation (RME) concur in their pre-
dictions for the evolution of trimon’s populations, coher-
ences, and qubit dynamics (characterized in the Bloch
sphere representation) as seen in Figures [2, 4, 3].
This is an interesting outcome, considering that both ap-
proaches are predicated on different approximations.

On the other hand the Time-Convolutionless (TCL)
approach, reveals a discrepancy. While both TCL1 and
TCL2 predictions align with each other they don’t with
LME and RME in terms of population dynamics; further,
they diverge in their predictions for coherences and Bloch
sphere evolutions (Figures [2,5,3]).
The discrepancy with the TCL2 results is particularly

noteworthy, as the coherences exceed ± unity during the
course of the simulation. This is physically implausible
as it violates the bounds of the coherence. This strongly
suggests an implementation error in the TCL2 method,
which warrants further investigation.

However, the TCL1 result seems plausible as it reflects
essentially unitary evolution, which is expected in the
absence of a bath or any external influences.

The initial state of the transmon system in this simu-

lation was the product superposition state -

|ψ(0)⟩ = 1√
2
(|0⟩+ |1⟩)⊗ 1√

2
(|0⟩+ |1⟩)⊗ 1√

2
(|0⟩+ |1⟩)

To further corroborate our observations, the simula-
tions were repeated for various initial density matrix
states, including the W state, Bell state, maximally en-
tangled states, one qubit excited states, and Greenberger-
Horne-Zeilinger (GHZ) states. The patterns observed
in the case of the trimon system held true across these
different initial states. The LME and RME consis-
tently yielded congruent predictions for populations, co-
herences, and qubit dynamics, whereas the TCL1 and
TCL2 approaches differed in their predictions for coher-
ences and Bloch sphere evolutions.
Further, we examined the effects of bath coupling

strength and dephasing parameters on these dynamics.
The simulations were performed in different regimes of
bath coupling strength and varying dephasing parame-
ters. Intriguingly, the agreement between the different
master equation’s predictions persisted across these vari-
ations, further strengthening the robustness of our ini-
tial observations or more likely demonstrating the same
source of systematic errors.
However, a departure from this trend was observed in

the case of very strong amplitude of dephasing. In this
specific instance, the LME and RME predictions for co-
herences and Bloch sphere evolution diverged (Figures
[6, 7]), although their predictions for populations re-
mained in agreement. This discrepancy suggests that
the Markovian approximation inherent in the LME may
break down under conditions of strong dephasing, leading
to deviations from the non-Markovian RME predictions.
It is also plausible that under these extreme conditions,
the system-bath correlations become significant, thus af-
fecting the dynamics in a way that is not captured by
the second-order RME. Further investigation is required
to elucidate the underlying causes for this divergence in
the strong dephasing regime.

VIII. CONCLUSION

In conclusion, we introduced a novel charge noise
model to the trimon to study its open system dynam-
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FIG. 3. From left to right: LME, Redfield ME, TCL1 ME, TCL2 ME

FIG. 4. Coherences without TCL2 ME

FIG. 5. Coherences with TCL2 ME

FIG. 6. Coherences under strong dephasing amplitude

ics, though further work is needed to refine it. Fur-
thermore, we also presented a comprehensive study of
this open quantum dynamics using numerical simula-
tions; We explored the predictions of different mas-
ter equations—namely, the Lindbladian master equation
(LME), Redfield master equation (RME), and Time-
Convolutionless (TCL) master equations—for the tri-
mon’s populations, coherences, and qubti state evolu-
tions. We observed interesting consistencies and discrep-
ancies in these predictions, thereby highlighting the com-
parative strengths and weaknesses of these master equa-
tions.

The LME and RME displayed congruence in their pre-
dictions across a range of initial density matrix states and
varying bath coupling strengths and dephasing parame-
ters - notably diverging in the strong dephasing ampli-
tudes. The TCL master equations, while consistent with
each other in terms of population dynamics, diverged
from the LME and RME predictions in their treatment
of coherences and Bloch sphere evolutions. In particular,
the TCL2 master equation yielded physically implausible
coherence values, suggesting a possible implementation
error.

Despite these results, we strongly urge readers to inter-
pret these findings with caution and skepticism. There
are several limitations to our study that could impact the
validity of our results. The methodological constraints
owing to our simulation package may have introduced
systematic errors that could undermine the generalizabil-
ity of our findings.

Future work should strive to address these limitations,
possibly starting with optimizing the TCL2 algorithm for
greater computational efficiency. Our hope is that such
enhancements will enable more accurate and robust sim-
ulations of open quantum dynamics, thereby advancing
our understanding of these complex systems.
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